Ground-mounted photovoltaic (GMPV) systems are a crucial component of photovoltaic (PV) applications, and their environmental impacts during large-scale development require thorough attention. This study conducted continuous observations at a GMPV plant in an arid region, employing a three-site comparative monitoring system to assess the environmental impact of both shaded and non-shaded areas within GMPV systems. The parameters measured included atmospheric temperature (AT), relative humidity (RH), soil temperature (ST), soil water content (SWC), and wind speed. The results revealed significant diurnal and seasonal variations in AT, with daytime warming and nighttime cooling ranging from 0.1 to 0.7 °C, with particularly large variations observed during high-temperature seasons. Shaded areas under the PV panels exhibited increased RH at night and decreased RH during the day, along with a cooling effect on ST, with a maximum reduction of 7 °C. SWC was higher in shaded areas during dry seasons but exhibited complex redistribution patterns during rainy seasons. Wind speed and direction were notably altered, demonstrating a corridor effect. These findings contrast with previous studies that only focused on the environmental assessment of non-shaded areas within PV systems and external areas using two-site monitoring. This study highlights the critical role of shaded areas in understanding the local environmental impacts of PV systems. This comprehensive approach offers deeper insights into how PV systems influence local meteorological and environmental conditions, suggesting that optimized design and placement of PV systems can enhance their ecological benefits and mitigate adverse environmental impacts in arid regions.