This work investigates a novel approach in terms of design, configuration, heat integration and optimization of a 6 kWe total energy system fueled with natural gas. Specifically, a Solid Oxide Fuel Cell (SOFC) is used for both electricity generation and fuel reforming, since its exhaust stream fuels a polybenzimidazole (PBI)-based, High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC). The study investigates the possible advantages of such a system in both technical and economic terms. After modeling each component/subsystem, the total system model is optimized with the objective function aiming to maximize the net electrical efficiency of the total hybrid system. The system is optimized with a genetic algorithm-based optimization strategy, reaching a net electrical efficiency of 43.6 %. In comparison to standalone fuel cell systems with the same net electrical power output, the proposed hybrid system outperforms both an HT-PEMFC system and an SOFC system, which perform at net electrical efficiencies of 23.2 % and 40.7 %, respectively. Also, the lifecycle cost for the proposed system is $64,097, which is lower than both standalone HT-PEMFC and SOFC systems. Therefore, with the current high rising costs for natural gas, such highly efficient systems are likely to become important elements of the future energy infrastructure.
Read full abstract