One potential problem in the hydrogen production system coupled with the high-temperature gascooled reactor (HTGR) is transmission of tritium from the primary coolant to the product hydrogen by permeation through the heat transfer tubes. Tritium accumulation in the process chemicals in the components of a hydrogen plant, a thermochemical water-splitting iodine-sulfur (IS) process, will also be a critical issue in seeking to license the hydrogen plant as a non-nuclear plant in the future. A numerical analysis model for tritium behavior in the IS process was developed by considering the isotope exchange reactions between tritium and the hydrogen-containing process chemicals, i.e., H2O, H2SO4 and HI. The tritium activity concentration in the IS process coupled with the high-temperature engineering test reactor (HTTR), the HTTR-IS system, was preliminarily evaluated in regard to the effects of some indeterminate parameters, i.e., equilibrium constants of the isotope exchange reactions, permeability of tritium through heat transfer tubes, tritium and hydrogen concentrations in the secondary helium coolant, and the leak rate from the secondary coolant loop. The results describing how the tritium activity concentration changes with variations in these parameters and which component has the maximum tritium activity concentration in the IS process are described in this paper.