We systematically investigate the anomalous electronic properties and electrical transport induced by full-shell d10-orbitals of the extra interstitial Nii in Ni-based half-Heusler XNi1+xZ semiconductors. The orbitals from the interstitial Nii have the unique d10 configuration, split into high-energy eg4 orbitals and low-energy t2g6 orbitals under the octahedral crystal field. In XIVNi1+xZIV (XIV=Ti, Zr, Hf; ZIV=Sn, Pb), the localized Nii-eg4 states fall within the intrinsic bandgap leading to a reduced bandgap. In XIIINi1+xZV (XIII=Sc, Y; ZV=Sb, Bi), the Nii-eg4 states overlap with the intrinsic valence bands. Additionally, the interstitial Nii perturb the nearest neighbor X atomic coordination, leading to the splitting of degenerate conduction band minimum, which is stronger in XIIINi1+xZV than XIVNi1+xZIV. Trace amounts of interstitial Nii significantly impact the electrical transport properties. The introduction of the extra interstitial Nii reduces the density of states effective mass, the electron group velocity, and the relaxation time, leading to a decrease of the Seebeck coefficient and electrical conductivity at low and medium temperatures. Nevertheless, the introduction of localized Nii-eg4 states within the bandgap as new valence band maximum attenuate the high-temperature bipolar effect at low carrier concentration intervals, thus maintaining a high thermopower at elevated temperatures. Furthermore, the tuning of the Nii-d10 orbitals by solid solution of both XIVNi1+xZIV and XIIINi1+xZV is expected to further optimize the electrical transport.
Read full abstract