This paper presents a novel baseband architecture that supports high-speed wireless VR solutions using 60 GHz RF circuits. Based on the experimental observations by our previous 60 GHz transceiver circuits, the efficient baseband architecture is proposed to enhance the quality of transmission. To achieve a zero-latency transmission, we define an (106,920, 95,040) interleaved-BCH error-correction code (ECC), which removes iterative processing steps in the previous LDPC ECC standardized for the near-field wireless communication. Introducing the block-level interleaving, the proposed baseband processing successfully scatters the existing burst errors to the small-sized component codes, and recovers up to 1080 consecutive bit errors in a data frame of 106,920 bits. To support the high-speed wireless VR system, we also design the massive-parallel BCH encoder and decoder, which is tightly connected to the block-level interleaver and de-interleaver. Including the high-speed analog interfaces for the external devices, the proposed baseband architecture is designed in 65 nm CMOS, supporting a data rate of up to 12.8 Gbps. Experimental results show that the proposed wireless VR solution can transfer up to 4 K high-resolution video streams without using time-consuming compression and decompression, successfully achieving a transfer latency of 1 ms.