This paper presents a novel approach for analyzing the effects of near-field underwater blast loading on composite marine structures. The operational requirements of these structures often expose them to blast or shock loading, which can lead to significant damage. The study focuses on the propagation of spherical blast waves and the subsequent secondary bubble collapse pulse that affects the structure under near-field underwater blast loading events. An analytical framework is developed to calculate the blast energies and structural energies during this complex loading event. The study further investigates the effect of applying a sacrificial cladding made of low-density closed-cell foam to the loading face of a composite panel. Experiments were conducted in a specialized facility to characterize the explosive-driven blast-loading and the subsequent interaction between the shock pressure front and the structure. Dynamic pressure measurements and high-speed imaging were utilized to capture the behavior of the composite panel under these extreme conditions. 3D digital image correlation was employed to analyze strain and deformation of the composite panel, while high-speed side view cameras captured the fluid-structure interaction during the blast and bubble collapse loading event. The results strongly indicate that the collapse of the explosion bubble is the dominant failure source in near-field underwater blast loadings. The analytical quantification of energy further corroborates the significant damaging effects of bubble collapse due to the buildup of after-flow energies during the bubble collapse duration. Furthermore, the inclusion of low-impedance elastic-plastic PVC foam cladding is shown to significantly mitigate the effect of blast loading on the composite structure.
Read full abstract