The air-assisted fuel injection (AAFI) system may be installed in the spark ignition aviation piston engine for the atomization of heavy fuels. However, studies on the effects of injection parameters on the spray characteristics are insufficient, which affects the improvement of AAFI engine performance. In this study, air-assisted diesel spray characteristics are investigated experimentally using a high-speed backlit imaging technique. The effects of main air-assisted injection control parameters such as fuel injection pressure, fuel temperature, and fuel injection duration on the spray characteristics are examined. The results show that spray shape changes from “spindle” to “cone” with an increase in fuel injection pressure. As the fuel injection pressure increases to 1.0 MPa, both the spray penetration and spray width increase significantly. “Protrusions” appear on the spray edge at high fuel temperatures. When the fuel temperature drops to 268 K, the spray penetration and spray width increase slightly. The spray shrinks significantly in both the axial and radial directions with an increase in fuel injection duration. Key parameters that directly affect air-assisted spray characteristics include the difference between the fuel-air mixture injection pressure and the ambient pressure, the density of fuel-air mixture in the air-assisted injector premixed chamber, and the kinetic energy density of the fuel. The former two parameters affect the spray penetration while the latter affects the spray width. The study is beneficial for the design of AAFI engines.
Read full abstract