Currently, conventional Global Positioning System (GPS) receivers work well in open-sky environments. However, location finding in weak-signal conditions, such as urban canyons and indoors, is challenging and has been the subject of extensive research. Assisted GPS (A-GPS) is one of the concepts that helps receivers acquire weak signals by receiving assistance data from wireless networks, such as orbital parameters, and coarse time and location references. A-GPS also improves time-to-first-fix (TTFF) through faster delivery of information that is recovered from navigation data broadcast by GPS satellites. Receiver technology developers rely on signal simulators for testing real-world scenarios. While A-GPS support has been integrated in many simulators, probabilistic models of delays occurring during assistance data delivery have not been studied properly. This paper provides a methodology of A-GPS network delay modeling that is applicable to various simulation environments. Particularly, a testbed is designed to collect delay data, model them statistically and integrate the model in a simulator. The testbed employs secure user plane location (SUPL) architecture in two modes, mobile station (MS) based (MS-based) and MS-assisted, where data channels are used to communicate A-GPS assistance data.Measurement campaigns are conducted and network delay models are derived for various representative distances between assistance servers and receivers, and for various networks that users connect to, such as LAN, WLAN, third-generation mobile telecommunication (3G), high-speed downlink packet access (HSDPA), and fourth-generation long term evolution (4G LTE), with the Transmission Control Protocol and the Internet Protocol (TCP/IP) connection between a server and a receiver.