Background Therapeutic strategies based on herbal plants and diets containing sufficient amounts of antioxidants and essential vitamins are very important factors in treating reproduction and male infertility worldwide. Thus, the aim of this study was to investigate the potential effects of Kaempferia parviflora (KP) on the role of some microRNAs in treated and nontreated infertile rats. In addition, the correlation of expressed microRNAs with sperm count, sperm motility, and sperm viability was identified. The probable use of these microRNAs as a diagnostic marker for predicting the clinical response of infertility to the treatment with KP was also achieved. Methods In the present study, the potential effects of Kaempferia parviflora (KP) at different doses (140, 280, and 420 mg/kg) for six weeks on male rats with subinfertility were explored. In addition, the effect of KP on the expression of circulating microRNAs and its correlation with the parameters of sexual infertility was identified by performing both in vitro and in vivo assays. In vitro antioxidant activity, sperm functional analysis, serum testosterone, and expression of circulating microRNAs were conducted using colorimetric, ELISA, and real-time RT-PCR analysis, respectively. Results Kaempferia parviflora (KP) at nontoxic doses of 140–420 mg/kg/day for six weeks significantly improved serum testosterone and epididymal sperm parameters (sperm count, motility, and sperm viability), increased testicular weight, and provided a reduction in the percentage of abnormal spermatozoon in infertile male rats. The expression of miR-328 and miR-19b significantly decreased, and miR-34 significantly increased in infertile rats treated with KP compared to infertile nontreated rats. After six weeks of KP therapy, the change in the expression levels of miRNAs was correlated positively with higher levels of serum testosterone and the measures of epididymal sperm parameters. The respective area under the receiver operating characteristic curve (AUC-ROC) was applied to predict the potential use of miR-328, miR-19b, and miR-34 in the diagnosis of male infertility in treated and nontreated infertile male rats. The data showed that AUC cutoff values of 0.91 for miR-328, 0.89 for miR-19b, and 0.86 for miR34 were the best estimated values for the clinical diagnosis of male rats with infertility. In rats treated with KP for six weeks, AUC cutoff values of 0.76 for miR-328, 0.79 for miR-19b, and 0.81 for miR-34 were the best cutoff values reported for the clinical response of infertility to KP therapy after six weeks. Conclusions In this study, the improvement of male infertility might proceed via antioxidant and antiapoptotic pathways, which significantly improve spermatogenesis and aphrodisiac properties of males. In addition, the expression of miRNAs, miR-328, miR-34, and miR-19b, in KP-treated and nontreated infertile rats significantly correlated with increased serum testosterone levels and epididymal sperm parameters as well. MicroRNAs, miR-328, miR-34, and miR-19b, might be related to oxidative and apoptotic pathways that proceeded in spermatogenesis. Thus, the use of miRNAs could have a role as diagnostic, therapeutic, and predictive markers for assessing the clinical response of Kaempferia parviflora treatment for six weeks. This may have potential applications in the therapeutic strategies based on herbal plants for male infertility. However, in subsequent studies, the genetic regulatory mechanisms of the expressed miRNAs should be fully characterized.
Read full abstract