Coronavirus disease 2019 (COVID-19), a respiratory illness caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared a pandemic in March 2020, and has caused more than 600,000 deaths in the United States at the time of this report. Hematopoietic stem cell transplantation (HCT) or chimeric antigen receptor T cell (CAR-T) therapy recipients have a higher risk of mortality with COVID-19 owing to profound immune dysregulation. In this study, we investigated the impact of SARS-CoV-2 in HCT/CAR-T therapy recipients. This single-center prospective study included all (n = 58) adult HCT/CAR-T recipients who were diagnosed with COVID-19 at the University of Kansas Medical Center between March 2020 and May 2021. Baseline and disease-related characteristics were ascertained from medical records. Data were analyzed using SPSS version 21 (IBM, Armonk, NY). Bivariate analyses, using the chi-square and t-test, and logistic regression analyses were conducted. The study included 58 HCT/CAR-T patients who acquired SARS-CoV-2 infection, including recipients of allogeneic HCT (n = 32), autologous HCT (n = 23), and CAR-T therapy (n = 3). The median patient age was 58 years (range, 24 to 77 years), and 64% were males. The median time from HCT/CAR-T therapy to SARS-CoV-2 infection was 17.7 months (range, 0.2 to 201.9 months), and 22% of the patients acquired SARS-CoV-2 within the first 100 days post-HCT/CAR-T therapy. The primary hematologic disorders were plasma cell (36%), myeloid (38%), and lymphoid (26%) malignancies. Myeloablative conditioning was performed in 62% of patients. Donors were autologous (45%), matched sibling (15%), matched unrelated (21%), and haploidentical (19%). Prior history of grade II-IV acute graft-versus-host disease (GVHD), active GVHD, and current immunosuppressive therapy (IST) was noted in 22%, 31%, and 36% of patients, respectively. Concurrent infections were observed in 19%. Lymphopenia (P = .049) and high serum ferritin concentration (P = .020) were associated with mortality. COVID-19 severity was mild in 50% of the patients, moderate in 22%, and severe in 28%. Clinical findings included pneumonia or abnormal chest imaging (in 50%), hypoxia (28%), intensive care unit admission (19%), and mechanical ventilation (10%). Therapies included remdesivir (in 41%), convalescent plasma (35%), dexamethasone (22%), monoclonal antibodies (19%), and tocilizumab (3%). The median duration of viral shedding (positive SARS-CoV-2 PCR) was 7.7 weeks (range, 2 to 18.7 weeks), and 2 patients had a persistent infection for >5 months post-CAR-T therapy. After a median follow-up of 6.1 months (range, 0.5-13.6 months), the mortality rate was 16% in all patients and 28% in allogeneic HCT recipients. Among 9 patients who died, the median survival after SARS-CoV-2 infection was 23 days (range, 14 to 140 days). In survivors with moderate-severe COVID-19, the median time to recovery was 4.2 weeks (range, 1.1 to 24.7 weeks). Among allogeneic HCT recipients, 5 (16%) developed subsequent pulmonary chronic GVHD necessitating systemic steroids and additional IST. Significant predictors of COVID-19 severity included allogeneic HCT (odds ratio [OR], 3.6, 95% confidence interval [CI], 1.2 to 10.8; P = .020), history of grade II-IV acute GVHD (OR, 4.6; 95% CI, 1.10 to 18.86; P = .036) and concurrent IST (OR, 5.9; 95% CI, 1.8 to 19.8; P = .004). HCT and CAR-T cell therapy recipients are at an increased risk of moderate-severe COVID-19 pneumonia and higher mortality with SARS-CoV-2 infection. Our findings confirm the need for continuing vigilance with social distancing and masks, vaccination prioritization, close monitoring, and aggressive treatment of HCT/CAR-T therapy recipients.