Goals of automated detection of epileptic seizures using wearable devices include objective documentation of seizures, prevention of sudden unexpected death in epilepsy (SUDEP) and seizure-related injuries, obviating both the unpredictability of seizures and potential social embarrassment, and finally to develop seizure-triggered on-demand therapies. Automated seizure detection devices are based on the analysis of EEG signals (scalp-EEG, subcutaneous EEG and intracranial EEG), of motor manifestations of seizures (surface EMG, accelerometry), and of physiologic autonomic changes caused by seizures (heart and respiration rate, oxygen saturation, sweat secretion, body temperature). While the detection of generalized tonic-clonic and of focal to bilateral tonic-clonic seizures can be achieved with high sensitivity and low false alarm rates, the detection of focal seizures is still suboptimal, especially in the everyday ambulatory setting. Multimodal seizure detection devices in general provide better performance than devices based on single measurement parameters. Long-term use of seizure detection devices in home environments helps to improve the accuracy of seizure diaries and to reduce seizure-related injuries, while evidence for prevention of SUDEP is still lacking. Automated seizure detection devices are generally well accepted by patients and caregivers.
Read full abstract