91 Background: Colorectal cancer (CRC) is the third leading type of cancer worldwide, with ~150,000 new cases in the US annually and a grim 14% 5-year survival for patients diagnosed at a late stage. A lack of treatment options leads to persistently poor prognosis for patients with advanced stage disease. KRAS mutations are well known drivers of CRC and other GI cancers. Multiple KRAS mutations occur in CRC, including G12D (34%), G12V (21%), G13D (20%), G12C (8%), and others (18%). Existing KRAS-targeted therapies have limited use in CRC, underscoring the need for pan-RAS inhibitors in treating CRC and other RAS driven cancers. Objective: Assess activity of ADT-007, our pan-RAS inhibitor, on wild-type (WT) and KRAS-mutant 3D bioprinted organoid tumor (BOT) tissue using our high-throughput ex vivo platform. Methods: Using previously established bioprinting protocols, WT and mutant BOTs were printed with HT29 and HCT116 cells, respectively. HT29 is an established human WT CRC cell line with known sensitivity to proteosome and survivin inhibitors. HCT116 is a KRASG13D mutant human CRC cell line. 3 sets of BOTs were generated and acclimated for 24h. One set was treated for 72h with proteosome inhibitor Bortezomib, another with survivin inhibitor YM155, and the third with our novel pan-RAS inhibitor ADT-007. Dose response curves were generated from both conventional ATP luminescence readouts and high-content imaging. Results: BOT tissue microarchitecture was validated and >200 µm diffusion in BOTs was confirmed using high-content imaging. Differential response was quantified using Cell TiterGlo endpoint assay as well as advanced image processing of high-content live/dead nuclear stained images captured at multiple z-plains. ADT-007 IC50 was found to be substantially lower for mutant HCT116 compared to that for WT HT29 cell line BOTs, which was consistent with separately conducted in vitro and in vivo studies. Conclusions: A pan-RAS inhibitor, such as ADT-007 with high selectivity for cancer cells with activated RAS that is not limited to a specific KRAS mutant allele or RAS isozyme, could have broader use for CRC and other RAS-driven cancers. Further, due to their potential to replicate biophysical characteristics of a tumor and its microenvironment, BOT based precision and personalized medicine platforms can provide more accurate drug efficacy readout compared to in vitro cancer models.
Read full abstract