Salt stress significantly reduces rice yield and deteriorates rice quality. The present study was conducted to explore the regulatory effects of sole and combined application of S-abscisic acid (S-ABA) and soil conditioner on rice under high salt stress. The experimental treatments comprised 0.1% S-ABA alone (T1), the application of soil conditioner (T2), the combined application of both S-ABA and halotolerant microorganism soil conditioner (T3), and a control without any regulatory substance (CK). The treatments were arranged in a randomized complete block design in triplicate. To simulate high salinity stress, a 0.6% saltwater solution (by mixing natural seawater with freshwater) was used for irrigation. The results showed that T3 alleviated the phytotoxic effects of high salt stress and substantially improved rice yield. Furthermore, the numbers of effective panicles, grains per panicle, and 1000-grain weight under T3 treatment were 13.3–14.5%, 8.9–14.1%, and 4.9–5.5% higher than CK owing to improvement in dry matter accumulation, SPAD values, leaf area index, antioxidant enzyme activity, and reduced malondialdehyde and sodium ion content in rice. Moreover, the T3 treatment increased the output, output rate, and conversion rate of stem sheath matter after the heading stage; improved the milling yield, starch paste viscosity, starch stickiness, and gelatinization enthalpy; and reduced rice chalkiness. In addition, the T3 treatment also increased the amylose contents and decreased the total protein contents, thereby improving the taste of the rice. Overall, the results indicated that the application of exogenous S-ABA and soil conditioner is an effective strategy to alleviate the severity of salt stress in rice.
Read full abstract