Amyloid-β (Aβ) accumulation in Alzheimer disease (AD) is typically measured using SUV ratio and the centiloid (CL) scale. The low spatial resolution of PET images is known to degrade quantitative metrics because of the partial-volume effect. This article examines the impact of spatial resolution, as determined by the reconstruction configuration, on the Aβ PET quantitation in both cross-sectional and longitudinal data. Methods: The cross-sectional study involved 89 subjects with 20-min [18F]florbetapir scans generated on an mCT (44 Aβ-negative [Aβ-], 45 Aβ-positive [Aβ+]) using 69 reconstruction configurations, which varied in number of iteration updates, point-spread function, time-of-flight, and postreconstruction smoothing. The subjects were classified as Aβ- or Aβ+ visually. For each reconstruction, Aβ CL was calculated using CapAIBL, and the spatial resolution was calculated as full width at half maximum (FWHM) using the barrel phantom method. The change in CLs and the effect size of the difference in CLs between Aβ- and Aβ+ groups with FWHM were examined. The longitudinal study involved 79 subjects (46 Aβ-, 33 Aβ+) with three 20-min [18F]flutemetamol scans generated on an mCT. The subjects were classified as Aβ- or Aβ+ using a cutoff CL of 20. All scans were reconstructed using low-, medium-, and high-resolution configurations, and Aβ CLs were calculated using CapAIBL. Since linear Aβ accumulation was assumed over a 10-y interval, for each reconstruction configuration, Aβ accumulation rate differences (ARDs) between the second and first periods were calculated for all subjects. Zero ARD was used as a consistency metric. The number of Aβ accumulators was also used to compare the sensitivity of CL across reconstruction configurations. Results: In the cross-sectional study, CLs in both the Aβ- and the Aβ+ groups were impacted by the FWHM of the reconstruction method. Without postreconstruction smoothing, Aβ- CLs increased for a FWHM of 4.5 mm or more, whereas Aβ+ CLs decreased across the FWHM range. High-resolution reconstructions provided the best statistical separation between groups. In the longitudinal study, the median ARD of low-resolution reconstructed data for the Aβ- group was greater than zero whereas the ARDs of higher-resolution reconstructions were not significantly different from zero, indicating more consistent rate estimates in the higher-resolution reconstructions. Higher-resolution reconstructions identified 10 additional Aβ accumulators in the Aβ- group, resulting in a 22% increased group size compared with the low-resolution reconstructions. Higher-resolution reconstructions reduced the average CLs of the negative group by 12 points. Conclusion: High-resolution PET reconstructions, inherently less impacted by partial-volume effect, may improve Aβ PET quantitation in both cross-sectional and longitudinal data. In the cross-sectional analysis, separation of CLs between Aβ- and Aβ+ cohorts increased with spatial resolution. Higher-resolution reconstructions also exhibited both improved consistency and improved sensitivity in measures of Aβ accumulation. These features suggest that higher-resolution reconstructions may be advantageous in early-stage AD therapies.
Read full abstract