Flexible molecular docking is a computational method of structure-based drug design to evaluate binding interactions between receptor and ligand and identify the ligand conformation within the receptor pocket. Currently, various molecular docking programs are extensively applied; therefore, realizing accuracy and performance of the various docking programs could have a significant value. In this comparative study, the performance and accuracy of three widely used non-commercial docking software (AutoDock Vina, 1-Click Docking, and UCSF DOCK) was evaluated through investigations of the predicted binding affinity and binding conformation of the same set of small molecules (HIV-1 protease inhibitors) and a protein target HIV-1 protease enzyme. The tested sets are composed of eight receptor-ligand complexes with high resolution crystal structures downloaded from Protein Data Bank website. Molecular dockings were applied between approved HIV-1 protease inhibitors and the HIV-1 protease using AutoDock Vina, 1-Click Docking, and DOCK6. Then, docking poses of the top-ranked solution was realized using UCSF Chimera. Furthermore, Pearson correlation coefficient (r) and coefficient of determination (r2) between the experimental results and the top scored docking results of each program were calculated using Graphpad prism V9.2. After comparing saquinavir top scored binding poses of each docking program with the crystal structure, various conformational changes were observed. Moreover, according to the relative comparison between the top ranked calculated ?Gbinding values against the experimental results, r2 value of AutoDock Vina, 1-Click Docking, and DOCK6 were 0.65, 0.41, and 0.005, respectively. The outcome of this study shows that the top scored binding free energy could not produce the best pose prediction. In addition, AutoDock Vina results have the highest correlation with the experimental results.