Brazil leads globally in achieving high lint yields for rain-fed cotton in large-scale fields, with about 92% of its cotton area unirrigated. This study hypothesized that cotton could achieve high yields when favorable climate conditions and management practices favor high fruit load. The objective was to analyze the impact of these factors on cotton yields by examining two commercial fields in Brazil in the same climatic zone (Aw, Koppen)—one in Sapezal (SPZ) and the other in Riachão das Neves (RN). The SPZ field (cv. TMG 47B2RF) spanned 20 hectares, while the RN field (cv. FM 974GLT) covered 90 hectares. The soils of both fields were classified as oxisols, with SPZ possessing a clayey texture and RN a sandy loam texture. The findings indicate that the high lint cotton yields—3111 kg·ha⁻1 in SPZ and 3239 kg·ha⁻1 in RN—were achieved through a combination of ideal weather conditions, high-quality soil, and effective management practices, which favored boll retention, and an optimal plant architecture with short stature (<1.1 m), 19–22 nodes, and ~165 bolls m−2. Boll weights averaged 1.85–1.91 g of lint, and fruit retention rates were 61.6% in SPZ and 66.2% in RN. The study reveals a significant yield gap compared to Brazil’s average lint cotton yield (~1900 kg·ha⁻1) and other high-yield commercial fields (~3500–3900 kg·ha⁻1 of lint). The results underscore that bridging this gap—ranging from 1200 to 2000 kg·ha⁻1—could enhance the sustainability of cotton farming in Brazil by maximizing existing cultivated areas. Ultimately, the insights from this study highlight the role of combining climate suitability, management practices, and soil quality improvement to achieve higher cotton productivity and reduce environmental pressures from agricultural expansion.
Read full abstract