The advancement of high-performance stator blades stands as a critical avenue for enhancing the efficacy of aero engines. This study aims to prepare carbon fiber reinforced aluminum matrix (CF/Al) composite stator blades with high-quality shapes and properties, optimize the lay-up design using Fibersim software, and investigate the effect of extrusion temperature on the forming quality. The mechanical properties and damage behavior were systematically analyzed by tensile, compression, and interlaminar shear tests. In addition, the vibration mode simulation reveals the force state under the 1st to 8th-order vibration modes. Results indicate that the [0°/+45°/0°/-45°/90°/-45°/0°/+45°/0°] lay-up parameters were optimal, achieving excellent shape and performance of curved preforms after curing. Composite blades fabricated at an extrusion temperature of 680°C exhibited clear contours, consistent dimensions, and no macro defects. SEM and EDS analyses showed uniform impregnation in all regions of the blade, high density, and good densification. Compared with the matrix alloy, the tensile strength of the composite blade was improved by 64.94%, the compressive strength by 35.7%, and the interlayer shear strength was as low as 72.6 MPa. The vibration mode simulation verified the applicability of the blade in the first-order vibration mode, which provides strong support for the application of composite materials in the aerospace field.