To address the limitations of low node utilization and inadequate adaptability in complex environments encountered by Rapidly-exploring Random Tree (RRT) algorithms during the expansion phase, this study presents an enhanced path planning algorithm—AODA-PF-RRT* (Adaptive Obstacle Density Adjustment-PF-RRT*). The proposed algorithm implements a random extension strategy for nodes that fail collision detection, thereby improving node efficiency. Furthermore, it dynamically partitions the area surrounding sampling points and calculates local obstacle density in real time. By leveraging this density information, the algorithm flexibly adjusts both the number of expansion points and the dichotomy threshold, significantly enhancing its responsiveness to environmental changes. We rigorously demonstrate the algorithm’s probabilistic completeness and asymptotic optimality. Simulation and benchmarking results demonstrate that the AODA-PF-RRT* algorithm not only generates smooth and high-quality paths compared to existing algorithms but also maintains low computational costs in complex environments, showcasing exceptional stability and robustness.
Read full abstract