Analytical model to evaluate the photovoltaic performance via the short circuit current density, open circuit voltage, fill factor, and efficiency of nonpolar (In,Ga)N solar cells at room temperature is conducted via this paper. The Indium content and structure thickness including the doping concentration impacts are assessed to obtain the optimum values that yield high efficiencies. The band gap energy, reverse saturation current density, and carrier mobility are the important factors that govern how the solar cell performance characteristics change with the adjusted parameters. The solar cell characteristics are calculated for American Society for testing and Materials experimental data related to 1-sun AM1.5D, AM1.5G, and AM0 spectra. A high quality In0.42Ga0.58N(1.42eV) solar cell with a 3μm thickness, 1017cm−3 doping concentration and reflection coefficient of about 15% can display as optimum efficiency as 25.43%,25.16% and 22.87% under respectively 1-sun AM1.5G, AM1.5D and AM0 illuminations. The optimum AM1.5G related photovoltaic conversion efficiency is reached for FF=89.2%, Voc=1.12V and Jsc=28.63mA.cm−2.
Read full abstract