Optimal conditions for obtaining high quality epitaxial Nb thin films on the monocrystalline sapphire R-plane by pulsed laser deposition in ultrahigh vacuum have been determined. The ratio of room temperature resistance to the residual resistance (RRR) on the substrate temperature has the maximum at about 630 °C. The RRR dependence on the growth rate has the maximum at growth rates of 3–6 nm/min. In epitaxial Nb films, there is a simultaneous increase in the value of RRR and growth misorientation of Nb(001) relatively sapphire R-plane. At the maximum value of RRR, the shapes of Nb X-ray diffraction (XRD) peaks (002) and (011) are symmetrical and close to the Gaussian distribution; at lower RRR values, the shapes of XRD peaks become asymmetrical and cannot be approximated by a single Gaussian distribution, and their shape can be described by the sum of several Gaussian functions. For all obtained films, full width at half maximum (FWHM) of Nb (002) and Nb (011) peaks are 0.2o and 0.4о, respectively. FWHM of Nb (002) rocking curves is 0.4o.
Read full abstract