Microalgal biomass has been proved to be a sustainable source for biofuels including bio-oil, biodiesel, bioethanol, biomethane, etc. One of the collateral benefits of integrating the use of microalgal technologies in the industry is microalgae’s ability to capture carbon dioxide during the application and biomass production process and consequently reducing carbon dioxide emissions. Although microalgae are a feasible source of biofuel, industrial microalgae applications face energy and cost challenges. To overcome these challenges, researchers have been interested in applying the bio-refinery approach to extract the important components encapsulated in microalgae. This review discusses the key steps of microalgae-based biorefinery including cultivation and harvesting, cell disruption, biofuel and value-added compound extraction along with the detailed technologies associated with each step of biorefinery. This review found that suitable microalgae species are selected based on their carbohydrate, lipid and protein contents and selecting the suitable species are crucial for high-quality biofuel and value-added products production. Microalgae species contain carbohydrates, proteins and lipids in the range of 8% to 69.7%, 5% to 74% and 7% to 65% respectively which proved their ability to be used as a source of value-added commodities in multiple industries including agriculture, animal husbandry, medicine, culinary, and cosmetics. This review suggests that lipid and value-added products from microalgae can be made more economically viable by integrating upstream and downstream processes. Therefore, a systematically integrated genome sequencing and process-scale engineering approach forimproving the extraction of lipids and co-products iscritical in the development of futuremicroalgal biorefineries.