With the increasing demand for trace sample analysis, injecting trace samples into liquid chromatography-mass spectrometry (LC-MS) systems with minimal loss has become a major challenge. Herein, we describe an in situ LC-MS analytical probe, the Falcon probe, which integrates multiple functions of high-pressure sample injection without sample loss, high-efficiency LC separation, and electrospray. The main body of the Falcon probe is made of stainless steel and fabricated by the computer numerical control (CNC) technique, which has ultrahigh mechanical strength. By coupling a nanoliter-scale droplet reactor made of polyether ether ketone (PEEK) material, the Falcon probe-based LC-MS system was capable of operating at mobile-phase pressures up to 800 bar, which is comparable to those of conventional ultraperformance liquid chromatography (UPLC) systems. Using the probe pressing microamount in situ (PPMI) injection approach, the Falcon probe-based LC-MS system showed high separation efficiency and good repeatability with relative standard deviations (RSDs) of retention time and peak area of 1.8% and 9.9%, respectively, in peptide mixture analysis (n = 6). We applied this system to the analysis of a trace amount of 200 pg of HeLa protein digest and successfully identified an average of 766 protein groups (n = 5). By combining in situ sample pretreatment at the nanoliter range, we further applied the present system in single-cell proteomic analysis, and 241 protein groups were identified in single 293 cells, which preliminarily demonstrated its potential in the analysis of trace amounts of samples with complex compositions.
Read full abstract