Abstract

Supercritical fluids (SCFs) can be found in a variety of environmental and industrial processes. They exhibit an anomalous thermodynamic behavior, which originates from their fluctuating heterogeneous micro-structure. Characterizing the dynamics of these fluids at high temperature and high pressure with nanometer spatial and picosecond temporal resolution has been very challenging. The advent of hard x-ray free electron lasers has enabled the development of novel multi-pulse ultrafast x-ray scattering techniques, such as x-ray photon correlation spectroscopy (XPCS) and x-ray pump x-ray probe (XPXP). These techniques offer new opportunities for resolving the ultrafast microscopic behavior in SCFs at unprecedented spatiotemporal resolution, unraveling the dynamics of their micro-structure. However, harnessing these capabilities requires a bespoke high-pressure and high-temperature sample system that is optimized to maximize signal intensity and address instrument-specific challenges, such as drift in beamline components, x-ray scattering background, and multi-x-ray-beam overlap. We present a pressure cell compatible with a wide range of SCFs with built-in optical access for XPCS and XPXP and discuss critical aspects of the pressure cell design, with a particular focus on the design optimization for XPCS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.