High pressure natural gas pipelines are prone to material failure and explosion due to various reasons. Over the years, scholars have done in-depth research on the process of chemical explosion. In this paper, the energy components of high-pressure trunk natural gas pipeline under normal operation state were derived. Based on the assumption of adiabatic non isentropic, the pressure distribution in the pipeline within a period of time after the pipeline cracks was derived, and the energy released by the physical explosion of the pipeline was further derived. To verify the theoretical results, an original size pipe explosion experiment was organized, and the pressure distribution obtained from the experiment was found to be in good agreement with the theoretical calculation results. Through the crack propagation time and the duration of ground motion obtained from the experiment, the range of the duration of the pipeline burst crack impact was obtained, and the equivalent range of the pipeline explosion was further calculated. At the same time, through the regression analysis of ground motion, the equivalent of the pipe explosion in this experiment was about 177 kg TNT, which was consistent with the theoretical results. Further, the theoretical model and experimental results were verified by numerical simulation, and deeply studied the influence factors of buried depth on the explosion equivalent, as well as the relationship between the environment of the pipeline and the explosion damage mode and hazard range of the pipeline. The research results of this paper give the calculation method and magnitude range of physical explosion equivalent of high-pressure trunk natural gas pipeline. It provides a reference for the formulation of safety standards for high-pressure trunk natural gas pipelines and inert gas pressure vessels.
Read full abstract