The objective of this study was the development, optimization, and validation of a novel reverse-phase high-pressure liquid chromatography (RP-HPLC) method for the quantification of reduced glutathione in pharmaceutical formulations utilizing simple UV detection. The separation utilized a C18 column at room temperature and UV absorption was measured at 215 nm. The mobile phase was an isocratic flow of a 50/50 (v/v) mixture of water (pH 7.0) and acetonitrile flowing at 1.0 mL/min. Validation of the method assessed the methods ability in seven categories: linearity, range, limit of detection, limit of quantification, accuracy, precision, and selectivity. Analysis of the system suitability showed acceptable levels of suitability in all categories. Likewise, the method displayed an acceptable degree of linearity (r(2) = 0.9994) over a concentration range of 2.5-60 µg/mL. The detection limit and quantification limit were 0.6 and 1.8 µg/mL respectively. The percent recovery of the method was 98.80-100.79%. Following validation the method was employed in the determination of glutathione in pharmaceutical formulations in the form of a conjugate and a nanoparticle. The proposed method offers a simple, accurate, and inexpensive way to quantify reduced glutathione.
Read full abstract