To establish novel criteria for determining the hydrogen compatibility of austenitic stainless steels, as well as to elucidate the mechanisms for hydrogen-assisted surface crack growth (HASCG), slow strain rate tensile (SSRT), elasto-plastic fracture toughness (JIC), fatigue crack growth and fatigue life tests were performed on Types 304, 316 and 316L steels in high-pressure hydrogen gas. As a criterion for the use of austenitic stainless steels with lower austenitic stability in hydrogen gas, a reduction in area (RA) in hydrogen gas, φH⩾57%, or a relative reduction in area, RRA⩾0.68, is proposed to ensure that there is no degradation in tensile strength by hydrogen. Observation of fracture surface morphologies and crack growth behaviours demonstrated that, in high-pressure hydrogen gas, SSRT surface crack grew via the same mechanism as for JIC crack and fatigue crack, i.e., these cracks successively grew with a sharp shape under the loading process, due to a localized slip deformation near the crack tip. Based on the elucidated HASCG mechanism, total elongation in hydrogen gas, δH⩾10%, or, φH⩾10%, is also introduced as another criterion.
Read full abstract