Ultrashort pulse lasers have allowed probing of molecular dynamics in real time on the femtosecond time scale, with exotic behavior ranging from alignment of molecules and clusters, structural deformation, phase transitions on solid, and electron localization in magnetic materials. A recent progress in high power ultrashort pulse lasers has opened new frontiers in physics and technology of light-matter interactions from X-ray generation, nuclear fusion, laser surgery, integrated and fiber optics, optical data storage, to 3D micro- and nano-structuring. An intriguing phenomenon that currently attracts a lot of interest is the self-assembly of periodic nanostructures in the direction perpendicular to the light polarization. Uniaxial birefringence observed after femtosecond laser irradiation of silica glass has been explained by induced nanogratings and referred as self-assembled form birefringence. Self organization process has been interpreted in terms of the interference of electron plasma waves resulting in electron concentration modulation, followed by freezing of the interference pattern by structural change in glass. However, the mechanism including dynamics of self-organized nanostructures formation is still not fully understood. Recently, a double-pulse pump-probe configuration was used to enhance ablation in fused silica and silicon. In similar experiments molecular ensembles with an oriented angular momentum were produced. Here, we describe the ultrafast writing dynamics of form birefringence produced by self-organized nanogratings in double pulse experiments. Rewritable five-dimensional (5D) optical data storage using self-assembled form birefringence was demonstrated.