Motivated by the significant efforts developed by researchers and engineers to improve the economic and technical performance of microgrids (MGs), this paper proposes an Active Disturbance Rejection Control (ADRC) for Distributed Energy Resources (DER) in microgrids. This approach is a nonlinear control that is based on a real-time compensation of different estimated disturbances. The DER operates along with the electrical grid to provide the load requirements. This load has a nonlinear and uncertain character, which presents a source of unmodeled dynamics and harmonic perturbations of the MG. The main objective of this paper is to ensure the stability and the continuity of service of the distributed generation resources by controlling the DC-AC converter. The ADRC as a robust control technique is characterized by its ability to compensate for the estimated total disturbances caused by the load variation and the external unmodeled perturbations to guarantee the high tracking performance of sinusoidal reference signals in the DER system. The ADRC technique is characterized by its nonlinear function, which provides a high robustness to the controlled system. However, in order to simplify the control structure by keeping its high reliability, this paper proposes to replace the nonlinear function with a simple error (termed linear ADRC), compares the impact of this modification on the system performances, and evaluates its operation in the presence of linear and nonlinear load variations. Simulation results are presented to demonstrate the efficiency of the proposed control approach for a three-phase DER.
Read full abstract