Achieving efficient charge transfer at small frontier molecular orbital offsets between donor and acceptor is crucial for high performance polymer solar cells (PSCs). Here we synthesize a new wide band gap polymer donor, PTQ11, and a new low band gap acceptor, TPT10, and report a high power conversion efficiency (PCE) PSC (PCE = 16.32%) based on PTQ11-TPT10 with zero HOMO (the highest occupied molecular orbital) offset (ΔEHOMO(D-A)). TPT10 is a derivative of Y6 with monobromine instead of bifluorine substitution, and possesses upshifted lowest unoccupied molecular orbital energy level (ELUMO) of -3.99 eV and EHOMO of -5.52 eV than Y6. PTQ11 is a derivative of low cost polymer donor PTQ10 with methyl substituent on its quinoxaline unit and shows upshifted EHOMO of -5.52 eV, stronger molecular crystallization, and better hole transport capability in comparison with PTQ10. The PSC based on PTQ11-TPT10 shows highly efficient exciton dissociation and hole transfer, so that it demonstrates a high PCE of 16.32% with a higher Voc of 0.88 V, a large Jsc of 24.79 mA cm-2, and a high FF of 74.8%, despite the zero ΔEHOMO(D-A) value between donor PTQ11 and acceptor TPT10. The PCE of 16.32% is one of the highest efficiencies in the PSCs. The results prove the feasibility of efficient hole transfer and high efficiency for the PSCs with zero ΔEHOMO(D-A), which is highly valuable for understanding the charge transfer process and achieving high PCE of PSCs.
Read full abstract