Abstract Background Cisplatin [cis-dichlorodiamine platinum (II)], is a well-recognized chemotherapeutical drug. Cisplatin has been employed in treating a wide range of human cancers, such as those of the breast, bladder, lung, ovarian, and testicular cancers. Its therapeutic action is attributed to its capacity to form crosslinks with the DNA's purine bases, disrupting DNA repair processes, causing DNA damage, and ultimately leading to apoptosis in cancerous cells. Nonetheless, the application of cisplatin is constrained by the development of multidrug resistance and the occurrence of severe adverse effects, including nephrotoxicity, bone marrow suppression, hearing loss, allergic responses, nerve damage, and low magnesium levels in the blood. Numerous strategies have been explored to enhance the anticancer effectiveness of cisplatin while minimizing its associated toxicities. These strategies include combination therapies that incorporate nanoparticles, liposomes, and polymer micelles. In this project, cisplatin was embedded into alginate hydrogels loaded with silver nanoparticles and in vitro cisplatin release study using HPLC and UV-Vis spectrophotometry were studied. Methods We developed a novel nanocomplex by integrating silver nanoparticles (AgNPs) with alginate hydrogel coating to create a versatile platform for drug delivery. To incorporate the chemotherapeutic agent, cisplatin (150 ppm) was introduced into the AgNPs-alginate mixture utilizing rapid stirring to ensure uniform distribution and encapsulation of cisplatin within the nanocomplex. A range of analytical methods, such as UV-Vis, FTIR, SEM/EDX, and Zeta potential analysis, were employed to characterize the nanocomplex. To evaluate cisplatin release kinetics from the nanocomplex, we employed an in vitro dialysis method for monitoring its sustained release. High-performance liquid chromatography (HPLC) was used for precise cisplatin release quantification, then validated by colorimetric spectrophotometry. This dual-method approach ensured accurate insights into the nanocomplex’s release dynamics, substantiating its potential in enhancing targeted cancer therapy through advanced drug delivery systems. Results The analysis through UV-Vis revealed an absorption spectrum around 410 nm, indicative of the characteristic plasmon resonance associated with silver nanoparticles. TEM provided high-resolution imagery, revealing that the size of the silver nanoparticles varied between 4 and 30 nm, averaging at 13 nm with a standard deviation of 5 nm specifically for the alginate-coated AgNPs. SEM images confirmed the anticipated spherical distribution of silver nanoparticles within the alginate hydrogel framework. EDX spectroscopy analysis further verified the incorporation of silver nanoparticles and platinum within the complex. The cisplatin release studies from this newly developed nanocomplex illustrated a prolonged, slow, and consistent release pattern, extending over days, in stark contrast to the rapid and complete release of cisplatin from its unbound state, which achieved peak release within an hour. Conclusions In this study, we successfully developed and validated an innovative, multifunctional nanoplatform for drug delivery, comprising alginate hydrogel synergistically co-loaded with silver nanoparticles (AgNPs) and cisplatin. This novel drug carrier system demonstrated a marked enhancement in the controlled delivery of cisplatin, evidenced by the slow and sustained release profile observed over three days. The slow and sustained release of cisplatin from the alginate complex, compared to the free form, highlights the efficacy of the nanoplatform in modulating the drug’s release kinetics.