Abstract

In total, three related substances (RS) associated with sotalol hydrochloride (STHCl) were herein identified with a novel gradient high-performance liquid chromatography (HPLC) protocol. Further characterization of these substances was then performed via liquid chromatography-mass spectroscopy (LC-MS/MS) and nuclear magnetic resonance (NMR) approaches. For these analyses, commercial STHCl samples were used for quantitative HPLC studies and the degradation of STHCl under acidic (1M HCl), alkaline (1M NaOH), oxidative (30% H2O2), photolytic (4500 Lx), and thermal stress conditions (100 °C) was assessed. This approach revealed this drug to be resistant to acidic, alkaline, and high-temperature conditions, whereas it was susceptible to light and oxidation as confirmed through long-term experiments. The putative mechanisms governing RS formation were also explored, revealing that RS3 was derived from the manufacturing process, whereas RS2 was generated via oxidation and RS1 was generated in response to light exposure. The cytotoxicity of these RS compounds was then assessed using MTT assays and acute toxicity test. Overall, this study provides details regarding the characterization, isolation, quantification, and toxicological evaluation of STHCl and associated RS compounds together with details regarding the precise, specific, and reliable novel HPLC technique, thus providing the requisite information necessary to ensure STHCl purity and safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call