Copper tin sulfide, Cu4SnS4 (CTS), a ternary transition-metal chalcogenide with unique properties, including superior electrical conductivity, distinct crystal structure, and high theoretical capacity, is a potential candidate for supercapacitor (SC) electrode materials. However, there are few studies reporting the application of Cu4SnS4 or its composites as electrode materials for SCs. The reported performance of the Cu4SnS4 electrode is insufficient regarding cycle stability, rate capability, and specific capacity; probably resulting from poor electrical conductivity, restacking, and agglomeration of the active material during continued charge-discharge cycles. Such limitations can be overcome by incorporating graphene as a support material and employing a binder-free, facile, electrodeposition technique. This work reports the fabrication of a copper tin sulfide-reduced graphene oxide/nickel foam composite electrode (CTS-rGO/NF) through stepwise, facile electrodeposition of rGO and CTS on a NF substrate. Electrochemical evaluations confirmed the enhanced supercapacitive performance of the CTS-rGO/NF electrode compared to that of CTS/NF. A remarkably improved specific capacitance of 820.83 F g-1 was achieved for the CTS-rGO/NF composite electrode at a current density of 5 mA cm-2, which is higher than that of CTS/NF (516.67 F g-1). The CTS-rGO/NF composite electrode also exhibited a high-rate capability of 73.1% for galvanostatic charge-discharge (GCD) current densities, ranging from 5 to 12 mA cm-2, and improved cycling stability with over a 92% capacitance retention after 1000 continuous GCD cycles; demonstrating its excellent performance as an electrode material for energy storage applications, encompassing SCs. The enhanced performance of the CTS-rGO/NF electrode could be attributed to the synergetic effect of the enhanced conductivity and surface area introduced by the inclusion of rGO in the composite.