Silicon is capable of delivering a high theoretical specific capacity (4200 mAh g-1) in lithium-ion batteries. However, silicon has poor electrical conductivity, huge volume expansion (∼300%), and unstable solid electrolyte interface (SEI) film, especially for micron-sized silicon particles. We proposed and prepared a novel vertical carbon (VG) coating on a porous silicon (p-Si) microparticle structure, which effectively alleviated the volume expansion and inhibited the interface reaction. The synthesized porous silicon p-Si@VG composite exhibited significant enhanced cycling stability and an excellent reversible capacity of 1563 mAh g-1 (capacity retention of 48.6%) after 200 cycles. The vertical carbon nanosheet structure constructed a three-dimensional conductive network. Therefore, the p-Si@VG composite showed better rate capability and higher lithium-ion diffusion rates. This work is expected to promote the application of micron Si-based composites in lithium-ion batteries.
Read full abstract