Perturbative Quantum Chromodynamics (pQCD) predicts that the small-$x$ gluons in a hadron wavefunction should form a Color Glass Condensate (CGC), characterized by a saturation scale $Q_s (x, A)$ which is energy and atomic number dependent. In this paper we study the predictions of CGC physics for electron - ion collisions at high energies. We consider that the nucleus at high energies acts as an amplifier of the physics of high parton densities and estimate the nuclear structure function $F_2^A(x,Q^2)$, as well as the longitudinal and charm contributions, using a generalization for nuclear targets of the Iancu-Itakura-Munier model which describes the $ep$ HERA data quite well. Moreover, we investigate the behavior of the logarithmic slopes of the total and longitudinal structure functions in the kinematical region of the future electron - ion collider eRHIC.
Read full abstract