ABSTRACTThe spin Hamiltonian parameters (g factors g|| and g⊥ and the hyperfine structure constants A|| and A⊥) for the doped Cu2+ ion (in the form of CuO) in ternary glasses (i.e. xMgO·(30-x)Na2O·69B2O3·CuO, with 5 < x < 17 mol%) are theoretically investigated based on the high-order perturbation formulas for a tetragonally elongated octahedral 3d9 complex. In these formulas, the required crystal-field parameters are estimated from the superposition model which enables correlation of the crystal-field parameters and hence the spin Hamiltonian parameters with the tetragonal distortion (characterized by relative tetragonal elongation δ along the C4 axis due to the Jahn–Teller effect) of [CuO6]10− cluster. The concentration dependences of the spin Hamiltonian parameters are illustrated by the approximately linear increases of the cubic field parameter Dq and the covalency factor N as well as the relative elongation δ with increasing the MgO concentration x. Based on the calculation, the [CuO6]10− clusters in the MNB glasses are found to suffer the relative elongations of about δ (≈ 0.125 Å) along the tetragonal axis due to the Jahn–Teller effect. The theoretical results show good agreement with the experimental data. And the improvement is also achieved in present work with respect to the previous theoretical analysis based on the conventional crystal-field model formulas by including the ligand orbital and spin–orbit coupling contributions.