In the study of the non-relativistic interaction between high-intensity femtosecond laser pulses and atoms, the influence of the magnetic field is commonly overlooked. This work investigates the effects of the magnetic field in the high-intensity few-cycle laser pulses with non-relativistic intensity of 3.5×1014W/cm2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$3.5 \ imes 10^{14} { }\\;\\;{\ ext{W}}/{\ ext{cm}}^{2}$$\\end{document} at the center wavelength of 800 nm on the high-order harmonic generation (HHG), attosecond pulse train (APT), isolated attosecond pulse (IAP), and the electron trajectory in the hydrogen atom, employing the numerical solution of the time-dependent Schrödinger equation in three dimensions (3D-TDSE). Two polarizations, linear and circular, are considered. A comparison with the scenario where the magnetic field is not considered shows that the magnetic field can apply significant corrections to the results. Particularly, considering the magnetic field for circular polarization can make the cutoff frequency of HHG coincide with the semi-classical relationship of ħωc=Ip+3.17Up\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\hbar {\\upomega }_{{\ ext{c}}} = {\ ext{I}}_{{\ ext{p}}} + 3.17{\ ext{U}}_{{\ ext{p}}}$$\\end{document}, a case that for circular polarization does not exist without considering the magnetic field. Moreover, accounting for the magnetic field leads to a reduction in the attosecond pulse duration for circular polarization for APT (360as\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$360{\ ext{ as}}$$\\end{document} versus 241as\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$241{\ ext{ as}}$$\\end{document}) and for IAP (834as\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$834{\ ext{ as}}$$\\end{document} versus 602as\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$602{\ ext{ as}}$$\\end{document}). Additionally, the difference in production efficiency of HHG and APT between linear and circular polarization is reduced by two orders of magnitude, when magnetic field is considered. Although considering the magnetic field complicates the electron trajectory, especially for circular polarization, however, our quantum model provides enhanced insight into how the interaction works, especially when and where the electron collides with the parent nucleus. In this case, the quantum mechanical modeling largely covers the huge difference of not considering the magnetic field in the results predicted by other works.