The tumor microenvironment (TME) in HPV-unrelated head and neck cancer (HNC) is considered to be immunologically "cold," and immunometabolic adaptations to radiotherapy (RT) can exacerbate these conditions and lead to radioresistance. Peroxisome proliferator-activated receptor-α (PPARα) agonism may improve the immune response to RT by reducing glucose scarcity through upregulation of fatty acid utilization in cancer cells. Our clinical trial data shows that high serum oleic acid (OA), a PPAR ligand, correlates with response to radioimmunotherapy. Orthotopic buccal tumor implantations of MOC2 and LY2 HNC cell lines were performed in C57BL/6 and BALB/c mice, respectively. Mice were placed on a high OA diet (38% kcal from OA) 3 weeks prior to tumor implantation. Control diet consisted of 1% kcal from OA. In vitro RT was performed to characterize the metabolic effects on the cancer cell lines. For in vivo studies, tumors were irradiated upon reaching 100 mm^3 with three 8 Gy fractions, given every 4-5 days. The PPARα agonist fenofibrate (FF, 100mg/kg/day) was given via oral gavage or intraperitoneal injection starting 5 days after RT. Tumor volume and overall survival were measured as objective outcomes, and flow cytometry was used to characterize the immune landscape of the tumor, blood, and lymph nodes. Mass spectrometry was employed for bulk proteomics and metabolomics on serum samples, and stable isotope labeling was performed on CD8 T cells from treated mice ex vivo. Extracellular flux analyses were performed on tumor cells and CD8 T cells to determine metabolic phenotypic changes. In vitro cytotoxicity was met for MOC2 and LY2 cancer cells in 100 uM FF and OA in comparison to solvent (p<0.01). Extracellular flux analyses show that RT upregulates the glycolytic phenotype of MOC2 and LY2 cancer cells; and that FF and/or OA decrease the glycolytic capacity of the cancer cells. Ex vivo extracellular flux analyses showed increased glycolytic capacity of CD8 T cells in mice treated with FF in comparison to RT alone. RT in combination with FF significantly improved tumor volume response in comparison to RT alone (mean 99.4 vs 182.7 mm^3, p = 0.001) and was comparable to combination radioimmunotherapy (with anti-PDL1 therapy; mean 99.4 vs. 132.3 mm^3). Unexpectedly, OA negated this improvement in efficacy in both MOC2 and LY2 tumor models; mice on the high OA diet had significantly higher average body weight (p<0.01). Significant changes in adaptive immune response were observed within the TME with the addition of FF. This was mirrored by changes in serum metabolomics. PPARα agonism improved the efficacy of RT in murine HNC models and could be considered in future translational clinical trial design.
Read full abstract