As human population growth has expanded in Southwest Florida, water quality has become degraded with an increased occurrence of harmful algal blooms (HABs). Red tide (Karenia brevis) originating offshore, intensifies in nearshore waters along Florida's Gulf Coast, and blue-green algae (Microcystis spp.) originating in Lake Okeechobee is discharged into the Caloosahatchee River. These HABs could be enhanced by anthropogenic nitrogen (N) and phosphorus (P) from adjacent watersheds. North Fort Myers is a heavily developed, low-lying city on the Caloosahatchee River Estuary serviced by septic systems with documented nutrient and bacterial pollution. To identify sources of pollution within North Fort Myers and determine connections with downstream HABs, this multiyear (2017-2020) study examined septic system- groundwater- surface water couplings through the analysis of water table depth, nutrients (N, P), fecal indicator bacteria (FIB), molecular markers (HF183, GFD, Gull2), chemical tracers (sucralose, pharmaceuticals, herbicides, pesticides), stable isotopes of groundwater (δ15N-NH4, δ15N-NO3) and particulate organic matter (POM; δ15N, δ13C), and POM elemental composition (C:N:P). POM samples were also collected during K. brevis and Microcystis spp. HAB events. Most (>80%) water table depth measurements were too shallow to support septic system functioning (<1.07 m). High concentrations of NH4+ and NOx, up to 1094 μM and 482 μM respectively, were found in groundwater and surface water. δ15N values of groundwater (+4.7‰) were similar to septic effluent (+4.9‰), POM (+4.7‰), and downstream HABs (+4.8 to 6.9‰), indicating a human waste N source. In surface water, FIB were elevated and HF183 was detected, while in groundwater and surface water sucralose, carbamazepine, primidone, and acetaminophen were detected. These data suggest that groundwater and surface water in North Fort Myers are coupled and contaminated by septic system effluent, which is negatively affecting water quality and contributing to the maintenance and intensification of downstream HABs.
Read full abstract