Surface albedo plays a pivotal role in the Earth’s energy balance and climate. This study conducted an analysis of the spatial distribution patterns and temporal evolution of albedo, normalized difference vegetation index (NDVI), normalized difference snow index snow cover (NSC), and land surface temperature (LST) within the Qilian Mountains (QLMs) from 2001 to 2022. This study evaluated the spatiotemporal correlations of albedo with NSC, NDVI, and LST at various temporal scales. Additionally, the study quantified the driving forces and relative contributions of topographic and natural factors to the albedo variation of the QLMs using geographic detectors. The findings revealed the following insights: (1) Approximately 22.8% of the QLMs exhibited significant changes in albedo. The annual average albedo and NSC exhibited a minor decline with rates of −0.00037 and −0.05083 (Sen’s slope), respectively. Conversely, LST displayed a marginal increase at a rate of 0.00564, while NDVI experienced a notable increase at a rate of 0.00178. (2) The seasonal fluctuations of NSC, LST, and vegetation collectively influenced the overall albedo changes in the Qilian Mountains. Notably, the highly similar trends and significant correlations between albedo and NSC, whether in intra-annual monthly variations, multi-year monthly anomalies, or regional multi-year mean trends, indicate that the changes in snow albedo reflected by NSC played a major role. Additionally, the area proportion and corresponding average elevation of PSI (permanent snow and ice regions) slightly increased, potentially suggesting a slow upward shift of the high mountain snowline in the QLMs. (3) NDVI, land cover type (LCT), and the Digital Elevation Model (DEM, which means elevation) played key roles in shaping the spatial pattern of albedo. Additionally, the spatial distribution of albedo was most significantly influenced by the interaction between slope and NDVI.
Read full abstract