Understanding interspecific differences in plant growth rates and their internal and external drivers is key to predicting species responses to ongoing environmental changes. Annual growth rates vary among plants based on their ecological preferences, growth forms, ecophysiological adaptations, and evolutionary history. However, the relative importance of these factors remains unclear, particularly in high-mountain ecosystems experiencing rapid changes. We examined how habitat associations, elevational optima, growth forms, and ecophysiological and anatomical traits influence interspecific differences in radial growth rates among 324 vascular dicot species naturally occurring in the western Himalayas. Growth rates were determined from annual ring width measurements on the oldest plant sections of over 7,800 individuals from a range of habitats (desert, steppe, wetland, alpine, subnival), growth forms (perennial tap-rooted, rhizomatous, cushiony, woody), and climatic gradients (elevations of 2,650-6,150 m). Habitat associations accounted for 24% of the variability in interspecific growth rates. Adding growth form and height increased the explanation to 42%, and incorporating plant functional traits further improved predictions to 46%. Growth rates were higher in warmer, drier conditions and lower in cold, wet environments. Subnival cushion plants had the slowest growth, while ruderal plants grew the fastest. Desert plants showed higher growth rates, reflecting their drought adaptive strategies, while wetland forbs had lower growth rates due to increased resource competition. Growth was positively correlated with leaf nitrogen content and non-structural carbohydrates (mainly fructans), due to enhanced photosynthesis and stress tolerance, and negatively correlated with leaf carbon and root nitrogen content. Our study of 324 dicot species in the western Himalayas suggests that plant growth in high elevations is determined by a combination of habitat conditions, morphological traits, and ecophysiological adaptations. Growth variations among the highest-growing angiosperms reflect adaptive strategies along the global 'fast-slow' and 'acquisitive-conservative' spectrums. These results underscore the importance of habitat-specific studies for predicting plant growth responses to environmental changes, emphasizing a species-specific approach for effective conservation in fragile ecosystems.
Read full abstract