Optimizing production efficiency in Surface-Mount Technology (SMT) manufacturing is a critical challenge, particularly in high-mix environments where frequent product changeovers can lead to significant downtime. This study presents a scheduling algorithm that minimizes changeover times on SMT lines by leveraging the commonality of Surface-Mount Device (SMD) reel part numbers across product Bills of Materials (BOMs). The algorithm’s capabilities were demonstrated through both simulated datasets and practical validation trials, providing a comprehensive evaluation framework. In the practical implementation, the algorithm successfully aligned predicted and measured changeover times, highlighting its applicability and accuracy in operational settings. The proposed approach integrates heuristic and optimization techniques to identify scheduling strategies that not only minimize reel changes but also support production scalability and operational flexibility. This framework offers a robust solution for optimizing SMT workflows, enhancing productivity, and reducing resource inefficiencies in both greenfield projects and established manufacturing environments.
Read full abstract