Reclaiming kinetic energy from vibrating machines holds great promise for sustainable energy harvesting technologies. Nevertheless, the impulsive current induced by vibrations is incompatible with conventional energy storage devices. The energy-management system necessitates novel designs of soft materials for lightweight, miniaturized, and integrated high-frequency electrochemical devices. Here, this work develops a conductive hydrogel with an electro-responsive polymeric network. The electro-responsive breathing transition of the crosslinking points facilitates the expeditious formation of a localized electrolyte layer. This layer features an exceedingly high local charge density, surpassing that of a saturated electrolyte solution by an order of magnitude, and thus enabling rapid charge transport under the influence of an applied voltage. The micro-capacitor based on the gel exhibits record-high capacitance of ≈2 mF cm-2 when the frequency of energy input reaches up to 104 Hz. This work also demonstrates a prototype battery charger that harvests energy from a running car engine. This study presents a feasible strategy for waste energy recycling using integrated electrochemical devices, opening a new avenue for ambient energy management.