Pubertal maturation is marked by significant changes in stress-induced hormonal responses mediated by the hypothalamic-pituitary-adrenal (HPA) axis, with prepubertal male and female rats often exhibiting greater HPA reactivity compared to adult males and females. Though the implications of these changes are unclear, elevated stress responsiveness might contribute to the stress-related vulnerabilities often associated with puberty. The current experiments sought to determine whether differences in cellular activation, as measured by FOS immunohistochemistry, or excitatory ionotropic glutamate receptor subunit expression, as measured by qRT-PCR, in the paraventricular nucleus (PVN) were associated with these noted pubertal shifts in stress reactivity in male and female rats. As the PVN is the key nucleus responsible for activating the hormonal stress response, we predicted greater cellular activation and higher expression levels of glutamate receptor subunits in the PVN of prepubertal males and females compared to their adult counterparts. Our FOS data revealed that while prepubertal males showed greater stress-induced activation in the PVN than adult males, prepubertal females showed less activation than adult females. Moreover, many of the NMDA, AMPA, and kainate receptor subunits measured, including Grin1, Grin2b, Gria1, Gria2, Grik1, and Grik2, had higher expression levels in adults, particularly in males. Though not supporting our initial predictions, these data do indicate that age and stress influence the activation of the PVN and the expression of glutamate receptor subunits important in its function. These data also suggest that the effects of age and stress are different in males and females. Though still far from a clear understanding of what mechanism(s) mediate pubertal shift in stress reactivity, these data add to our growing understanding of how age, stress, and sex influence HPA function.