As a result of frequency and power limitations, multi-core processors and accelerators are becoming more and more prevalent in today’s systems. To fully utilize such systems, heterogeneous parallel programming is needed, but this introduces new complexities to the development. High-level frameworks such as SkePU have been introduced to help alleviate these complexities. SkePU is a skeleton programming framework based on a set of programming constructs implementing computational parallel patterns, while presenting a sequential interface to the programmer. Using the various skeleton backends, SkePU programs can execute, without source code modification, on multiple types of hardware such as CPUs, GPUs, and clusters. This paper presents the design and implementation of a new backend for SkePU, adding support for FPGAs. We also evaluate the effect of FPGA-specific optimizations in the new backend and compare it with the existing GPU backend, where the actual devices used are of similar vintage and price point. For simple examples, we find that the FPGA-backend’s performance is similar to that of the existing backend for GPUs, while it falls behind in more complex tasks. Finally, some shortcomings in the backend are highlighted and discussed, along with potential solutions.
Read full abstract