Co0.5Cu0.3Ni0.2Al x Fe2−x O4 (x = 0, 0.07, 0.14, and 0.21) rods of large-area arrays are synthesized by a solvothermal method, followed by calcination in air. The samples are characterized by powder X-ray diffraction, FT-IR spectra, scanning electron microscope, and vibrating sample magnetometer. The effect of diamagnetic Al3+ ion substitution and calcination temperature on the structure, morphology, and magnetic properties of Co0.5Cu0.3Ni0.2Al x Fe2−x O4 has been investigated. The results indicate that high-crystallized cubic Co0.5Cu0.3Ni0.2Al x Fe2−x O4 rods of large-area arrays are obtained when the precursors are calcined at 750 °C in air for 3 h. The crystallite size of Co0.5Cu0.3Ni0.2Al x Fe2−x O4 increases with the increase in Al3+ content, attributed to the decrease in lattice strain in Co0.5Cu0.3Ni0.2Al x Fe2−x O4 with the increase in Al3+ content. The lattice parameters of Co0.5Cu0.3Ni0.2Al x Fe2−x O4 slightly increase with the increase in Al3+ content. This is due to the transformation from cubic NiFe2O4 phase to cubic CoFe2O4 phase after doping Al3+ ion. Al3+ substitution can improve the magnetic properties of Co0.5Cu0.3Ni0.2Al x Fe2−x O4. Co0.5Cu0.3Ni0.2Al0.14Fe1.86O4, calcined at 950 °C, has the highest specific saturation magnetization (86.36 ± 2.25 emu/g) and magnetic moment (3.586 ± 0.093 μ B ). Co0.5Cu0.3Ni0.2Al0.21Fe1.79O4, calcined at 950 °C, has the highest initial permeability (17.216 ± 0.448). The results are explained by Neel’s two sublattices.