Grain yields are presented from a 10-year field trial with four tillage regimes (annual ploughing, harrowing only, ploughing/harrowing alternate years and minimum tillage) on clay loam. We also present soil physical analyses and use the compaction verification tool (CVT) to assess compaction on plots with annual ploughing and minimum tillage, after using slurry tankers with contrasting wheel loads (4.1 Mg, 6.6 Mg) and wheeling intensities (1×/10×) in the 11th trial year, and yields monitored two years after compaction. Winter wheat yields in the period before compaction were strongly affected by tillage, with annual ploughing giving on average 24% higher yield than direct drilling. Both wheat and oats were far less affected in treatments with harrowing only or ploughing/harrowing alternate years, on average within 6% of annual ploughing. Yields after compaction were affected by both previous tillage and compaction intensity. In the first year, single wheeling after annual ploughing gave 23% yield reduction with 4.1 Mg wheel load and 28% reduction with 6.6 Mg wheel load, whilst multiple wheeling gave 14% reduction at 6.6 Mg wheel load. Yield reductions after minimum tillage ranged from 63% (single wheeling with 4.1 Mg) to 100% (multiple wheeling with 6.6 Mg). Similar trends were found in the second year. The soil physical data indicated that all wheeling led to changes in bulk density, pore sizes and permeability in both topsoil and subsoil on both sampled tillage plots. However, effects in the subsoil were partly masked by the soil's high initial bulk density, partly due to its high clay content. The CVT, which plots air capacity against hydraulic conductivity, suggested some harmful compaction on both plots, with the minimum tillage plot being less affected than the ploughed plot. However, yield results did not support this conclusion, indicating that other factors limited yields on the minimum tilled plot.