Alveolar echinococcosis (AE) is a severe parasitic zoonosis caused by the larval stage of Echinococcus multilocularis. The identification of the antigens eliciting acquired immunity during infection is important for vaccine development against Echinococcus infection. Here, we identified that E. multilocularis calreticulin (EmCRT), a ubiquitous protein with a Ca2+-binding ability, could be recognized by the sera of mice infected with E. multilocularis. The native EmCRT was expressed on the surface of E. multilocularis larvae as well as in the secreted products of metacestode vesicles and protoscoleces (PSCs). The coding DNA for EmCRT was cloned from the mRNA of the E. multilocularis metacestode vesicles and a recombinant EmCRT protein (rEmCRT) was expressed in E. coli. Mice immunized with soluble rEmCRT formulated with Freund’s adjuvant (FA) produced a 43.16% larval vesicle weight reduction against the challenge of E. multilocularis PSCs compared to those that received the PBS control associated with a high titer of IgG, IgG1 and IgG2a antibody responses as well as high levels of Th1 cytokines (IFN-γ and IL-2) and Th2 cytokines (IL-4, IL-5 and IL-10), produced by splenocytes. Our results suggest that EmCRT is an immunodominant protein secreted by E. multilocularis larvae and a vaccine candidate that induces partial protective immunity in vaccinated mice against Echinococcus infection.
Read full abstract