Abstract With a one-dimensional stellar evolution model, we find that massive main sequence stars can accrete mass at very high mass accretion rates without expanding much if they lose a significant fraction of this mass from their outer layers simultaneously with mass accretion. We assume the accretion process is via an accretion disk that launches powerful jets from its inner zones. These jets remove the outer high-entropy layers of the mass-accreting star. This process operates in a negative feedback cycle, as the jets remove more envelope mass when the star expands. With the one-dimensional model, we mimic the mass removal by jets by alternating mass addition and mass removal phases. For the simulated models of 30M ⊙ and 60M ⊙, the star does not expand much if we remove more than about half of the added mass in not-too-short episodes. This holds even if we deposit the energy the jets do not carry into the envelope. As the star does not expand much, its gravitational potential well stays deep, and the jets are energetic. These results are relevant to bright transient events of binary systems powered by accretion and the launching of jets, e.g., intermediate luminosity optical transients, including some luminous red novae, the grazing envelope evolution, and the 1837–1856 Great Eruption of Eta Carinae.
Read full abstract