ABSTRACT We present hybrid spectral energy distributions, combining photon, and neutrino fluxes, for a sample of blazars, which are candidate IceCube neutrino sources. We furthermore check for differences in our sources’ variability in the near-infrared, optical, X-ray, and γ-ray bands compared to a sample of non-neutrino source candidate blazars, and investigate the state of each blazar at the arrival time of high-energy neutrinos. We find no significant differences when comparing our sample with control sources, also in terms of their spectral energy distributions, and no correlation between flaring states and neutrino arrival times. Looking for signatures of hadronic production, we check for similar strengths of the γ-ray and neutrino fluxes and find a $2.2\, \sigma$ signal for our source candidates. The hybrid spectral energy distributions assembled here will form the basis of the next step of our project, namely lepto-hadronic modelling of these blazars to assess the physical likelihood of a neutrino connection.