Solid polymer electrolytes (SPEs) with the advantages of high safety, low volatility, and the ability to suppress Li dendrites are highly desirable to be used in next generation high-safety and high-energy lithium-ion batteries. The exploration of SPEs with superior comprehensive properties has received extensive attention for high-performance all-solid-state batteries (ASSBs). Herein, a sandwich-like nanofibrous membrane-reinforced poly-caprolaclone diol and trimethyl phosphate (TMP) composite polymer electrolyte (CPE) has been designed by a facile "solvent-free" solution-casting method. Specifically, the flame-retardant TMP is employed as a plasticizer, which can improve the ionic conductivity effectively. The as-prepared solid electrolyte exhibits superior comprehensive performance in terms of high ionic conductivity, wide electrochemical window, good compatibility with lithium metal, and superior thermal stability. Furthermore, the assembled Li//LiFePO4 ASSBs with this solid CPE show outstanding cycling stability and high average discharge capacity at room temperature (30 °C). Undoubtedly, our study provides a new facile method and a qualified solid electrolyte material for next generation high-performance ASSBs.
Read full abstract